直流コロナ放電を用いた水処理における液中化学反応の検討

Investigation of chemical reaction in aqueous solution on water treatment using DC corona discharge

○見市知昭 眞銅雅子 大阪工業大学工学部電気電子システム工学科

論文要旨

直流コロナ放電を液面に照射することで水中に含まれる難分解性有機化合物を分解することができる。しか しながら、液中の化学種の反応過程は複雑であり、これまで詳細な検討は行われていなかった。本論文では、 酢酸の分解を含む活性酸素種の液相反応をモデル化し、数値シミュレーションを用いてこれらの時間発展を求 め、実験結果との比較を行った。その結果、過酸化水素、オゾン、および負イオンである O₃-が液相に供給さ れる条件で計算したものが最も実験結果と似た傾向を示した。

This study investigates the characteristics of acetic acid decomposition on a negative DC corona discharge over water. The results of experiment and simulation show the same trend on time variation of acetic acid concentration. Therefore, the simulation model that considers the supply of ozone, hydrogen peroxide and O_3^- can confirm the change in acetic acid concentration. Our results indicate that negative ions such as O_3^- can be used for water treatment by DC corona discharge.

キーワード:コロナ放電,促進酸化処理

1. はじめに

水中の気泡内または水面上での放電プラズマの発生によって活性酸素種であるヒドロキシルラジカル(以下 「OH」とする)を容易に生成できることから、その応用として水中の難分解性有機化合物の分解に関する研究 が行われている。筆者らの研究グループでは、液相での OH 生成に着目して、負極性直流コロナ放電による水 処理法に関する研究を行ってきた。直流コロナ放電は水面から 4mm 離れた針先で発生しており、この放電によ ってイオン風が液面に向かって発生する。コロナ放電によって気相で生成する活性酸素種には、 $O_x(x=1~3)$ 、 $H_xO_y(x=1~2, y=1~2), O^-, O_2^-, O_3^-, H^-, OH^-$ などがあげられ、これらの中で長寿命のものはイオン風に よって液相まで輸送される。この活性酸素種の中でオゾン(以下「 O_3 」とする)と過酸化水素(以下「 H_2O_2 」 とする)が液相での OH 生成に寄与していると推察できるが、それら以外の種による OH 生成への影響も含め て、これらの液相化学反応については未解明である。

本研究では、酢酸の分解を含む活性酸素種の液相反応をモデル化し、数値シミュレーションを用いてこれらの 時間発展を求め、実験結果との比較を行った。

2. 実験方法

表1にシミュレーションにおいて考慮した液相反応を示す。これらは中性付近での反応を想定している。シ ミュレーションは0次元であり、表1に示した液相種のレート方程式はCOMSOL Multiphysics ver 5.4を用 いて解いた。シミュレーションモデルではH₂O₂とO₃と負イオンが気相から液相に一定に供給され続けると仮 定した。これらの活性酸素種はコロナ放電等によって気相中で生成されると考えている。これらの供給量(吸収 量)は、それぞれ実験結果から算出した。実験装置や方法については既に報告した内容と同様なのでここでは省 略する^[1]。H₂O₂とO₃の吸収量は溶液の初期 pH を 4.0 とした時の濃度の単位時間当たりの増加割合から求めた。H₂O₂ とO₃の吸収量はそれぞれ 0.147 mmol/m³/s、0.174 mmol/m³/sとなった。負イオンの吸収量は、コロナ放電電流より算出し、0.180 mmol/m³/sとなった。なお、本研究では、コロナ放電によって生成した負イオンは液面に入り、液中にある平板電極から電子が出るという現象が起きていると考察している。液面に入る負イオンの種類が不明のため、負極性のコロナ放電において観測されているO₂⁻とO₃⁻の吸収量の割合を変化させて計算を行った^[2]。

3. 実験結果

図1に O_2 ⁻と O_3 ⁻の吸収量の割合を変化させた場合での 酢酸濃度の時間変化の計算結果を示す。H2O2 と O3 の吸収 量は先に述べたものとする。なお、図でプロットしているデ ータは、装置を用いて酢酸分解実験を行った時の結果であ る。O3⁻の吸収量の割合を増加させると酢酸濃度は速く減少 し、実験結果に近づくことがわかった。図2に同様に計算し たH2O2濃度の時間変化を示す。いずれの条件でも実験結果 との差が見られたが、O2⁻の割合が100%の場合では、時間 とともに増加し続ける結果となった。実験結果と同じ上に凸 の変化を示すものは 03-の吸収量の割合が 100%の条件と なった。今回、直流コロナ放電処理における負イオンの影響 を調べるために、放電電流から算出した吸収量を用いてシ ミュレーションを行ったが、液面に供給される負イオンが O3⁻のみであると仮定すると実験結果と近い傾向を示した。 O₃[−]の利用ができているとするならば、その反応は表 1 の 式26、式20であり、O3⁻はHO3を経てOHを生成する。 また表1の式18のH2O2の生成およびこのH2O2とO3の 反応によって OH を生成し、酢酸がより分解したと考えら れる。

4. まとめ

本研究では、酢酸分解を含む活性酸素種の液相反応をモ デル化し、数値シミュレーションを用いてこれらの時間発 展を求め、実験結果との比較を行った。 H_2O_2 、 O_3 および負 イオンが液相に供給されるモデルにおいて、負イオンを全 て O_3^- とした条件が最も実験結果と似た傾向を示した。以 上のことから、コロナ放電を用いた水処理では、 $H_2O_2 \ge O_3$ の他に負イオンである O_3^- が利用できている可能性を見出 した。

[1] 川端唯斗ほか, 電学論 A, Vol. 141, No. 4, p. 213-219, 2021

[2] M. Sabo et al., International Journal of Mass Spectrometry, Vol. 293, p. 23-27, 2010

表1 各種化学種の液相反応

No.	Reaction	Rate coefficient
1	$O_3 + OH^- \rightarrow O_2^- + HO_2$	70 L/mol/s
2	$O_3 + HO_2^- \rightarrow HO_2 + O_3^-$	2.8 × 10 ⁶ L/mol/s
3	$\mathrm{O}_3 + \mathrm{H}_2\mathrm{O}_2 \longrightarrow \mathrm{H}_2\mathrm{O} + 2\mathrm{O}_2$	6.5 × 10 ⁻³ L/mol/s
4	$O_3 + OH \rightarrow HO_2 + O_2$	1.1 × 10 ⁸ L/mol/s
5	$O_3 + O_2^- \rightarrow O_2 + O_3^-$	1.6 × 10 ⁹ L/mol/s
6	$O_3 + HO_2 \rightarrow OH + 2O_2$	1.0×10^4 L/mol/s
7	$\mathrm{H_2O_2} + \mathrm{O_2}^- \longrightarrow \mathrm{OH} + \mathrm{O_2} + \mathrm{OH}^-$	0.13 L/mol/s
8	$\rm H_2O_2 + OH \rightarrow \rm H_2O + \rm HO_2$	2.7×10^7 L/mol/s
9	$\mathrm{OH} + \mathrm{HO_2}^- \longrightarrow \mathrm{H_2O} + \mathrm{O_2}^-$	7.5 × 10 ⁹ L/mol/s
10	$OH + O_3^- \rightarrow O_3 + OH^-$	2.5 × 10 ⁹ L/mol/s
11	$OH + O_3^- \rightarrow O_2^- + HO_2$	6.0 × 10 ⁹ L/mol/s
12	$\rm OH + OH \longrightarrow H_2O_2$	5.5 × 10 ⁹ L/mol/s
13	$\mathrm{OH} + \mathrm{HO}_2 \longrightarrow \mathrm{H}_2\mathrm{O} + \mathrm{O}_2$	7.1 × 10 ⁹ L/mol/s
14	$\mathrm{OH} + \mathrm{O_2}^- \rightarrow \mathrm{OH}^- + \mathrm{O_2}$	1.0×10^{10} L/mol/s
15	$\rm OH + HO_3 \rightarrow H_2O_2 + O_2$	5.0 × 10 ⁹ L/mol/s
16	$\mathrm{HO}_2 + \mathrm{O}_2^- \rightarrow \mathrm{HO}_2^- + \mathrm{O}_2$	9.7 × 10 ⁷ L/mol/s
17	$\mathrm{HO}_2 + \mathrm{HO}_2 \rightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2$	8.6 × 10 ⁵ L/mol/s
18	$\mathrm{HO}_3 + \mathrm{HO}_3 \rightarrow \mathrm{H}_2\mathrm{O}_2 + 2\mathrm{O}_2$	5.0 × 10 ⁹ L/mol/s
19	$\mathrm{HO}_3 + \mathrm{O_2}^- \rightarrow \mathrm{OH}^- + \mathrm{2O_2}$	1.0×10^{10} L/mol/s
20	$\rm HO_3 \rightarrow OH + O_2$	$1.4 \times 10^5 1/s$
21	$\rm H_2O \rightarrow \rm H^+ + \rm OH^-$	$2.6 \times 10^{-5} 1/s$
22	$H^+ + OH^- \rightarrow H_2O$	1.3 × 10 ¹¹ L/mol/s
23	$\mathrm{HO}_2 \rightarrow \mathrm{H}^+ + \mathrm{O}_2^-$	$3.2 \times 10^5 1/s$
24	$H^+ + O_2^- \rightarrow HO_2$	2.0 ×10 ¹⁰ L/mol/s
25	$\mathrm{HO}_3 \rightarrow \mathrm{H^+} + \mathrm{O_3}^-$	$3.7 \times 10^4 \text{ 1/s}$
26	$H^+ + O_3^- \rightarrow HO_3$	5.2×10^{10} L/mol/s
27	$\mathrm{H_2O_2} + \mathrm{OH}^- \longrightarrow \mathrm{H_2O} + \mathrm{HO_2}^-$	5.0×10^8 L/mol/s
28	$\mathrm{H_2O} + \mathrm{HO_2}^- \longrightarrow \mathrm{H_2O_2} + \mathrm{OH}^-$	5.7×10^4 L/mol/s
29	$CH_3COOH + OH \rightarrow 0.4(COOH)_2 + Byproduct$	8.5×10^7 L/mol/s
30	$(COOH)_2 + OH \rightarrow Byproduct$	7.7×10^{6} L/mol/s
30		

図2 過酸化水素濃度の時間変化の計算結果